

INtip workflow on automated liquid handlers for microgram scale, Low Endotoxin Plasmid Purifications

<u>Todd Mullis</u> • Cameron Billy • Jordan Cook • Patrick Kates • L. Andrew Lee

Integrated Micro-Chromatography Systems, Inc., Irmo, SC

Contact: inquiries@imcstips.com

INTRODUCTION

- Plasmid technology is a cornerstone in biotherapeutic applications
- High endotoxin content in purified plasmid samples can negatively impact downstream applications
- High throughput low-endotoxin plasmid purification is enabled via IMCStips
- Multi-modal programming on Hamilton STAR reduces off-deck handling
- Ready-to-use product concentrated into a user-defined solution in under 1 hour

RESULTS

Figure 1. IMCStips® containing loose resin employ dispersive solid phase extraction inside pipettes to perform efficient automated extractions.

INSTRUMENTATION

- Instruments: Hamilton Microlab[™] STAR, NanoDrop 2000, SpectraMax M5
- Consumables: SizeX₁₀₀ IMCStips[®], MicroPure LE IMCStips[®], Pierce[™] Chromogenic Endotoxin Quantitation Kit

Figure 4. A) Optimization of plasmid binding to microPure LE reveals that binding occurs exponentially with a plateau around 20 aspiration and dispense cycles. **B)** 1.0 % agarose gel loaded with 50 ng of post SizeX₁₀₀ eluates for pCRS240.3 replicate samples. Supercoiled DNA (SC) runs further through the gel than open circle DNA (OC). **C)** Sequencing results for post SizeX₁₀₀ pCRS166 (76 ng/µL) demonstrate reliable downstream application.

PLASMID RECOVERY PROFILE

METHODOLOGY

- Cells undergo alkaline lysis
- Cleared lysate brought to 2% Triton[™] X-114
- Plasmid is extracted and purified via IMCStips
- Eluted pDNA is desalted into buffer of choice with SizeX₁₀₀

Figure 5. The largest plasmid construct, pCRS158, demonstrated a significantly higher µg amount than pCRS166 and pCRS240.3 (* denotes p-value < 0.05).

Table 1. Triton X-114 untreated samples (pCRS166) show ~34x higher endotoxin content than Triton X-114 treated samples.

	pCRS158	pCRS166	pCRS240.3
Plasmid size (bp)	8484	6258	3593
Total OD600	53.0	35.6	55.0
Post-SizeX Yield (µg)	14.6 ± 1.3	10.9 ± 1.1	11.3 ± 1.1
A260/280	1.88 ± 0.00	1.89 ± 0.03	1.89 ± 0.01
A260/230	2.27 ± 0.01	2.05 ± 0.07	2.37 ± 0.01
Plasmid Purified (pmoles)	47 ± 4.2	48 ± 4.8	87 ± 8.5
[Endotoxin] (EU/µg plasmid)	0.116 ± 0.110	3.36 ± 0.901	0.065 ± 0.109

CONCLUSIONS

- Our method works optimally when cultures are grown in Plasmid+ media, extracted with 20 sample binding cycles, and washed twice with equilibration/wash buffer.
- Our method provides >10 μg of desalted pDNA from 2 mL of overnight culture.
- 96 samples can be processed and < 1 EU/µg per sample.
- Ready-to-use pDNA in 57 minutes.

Figure 3. Workflow for the preparation of pDNA samples and subsequent automated purification on the Hamilton STAR.

REFERENCES

- Kates PA, Cook JN, Ghan R, Nguyen HJ, Sitasuwan P, Lee LA. Incorporation of automated buffer exchange empowers high-throughput protein and plasmid purification for downstream uses. *SLAS Technol*. S2472-6303(23)00005-5 (2023).
- 2. Sousa Â, Sousa F, Queiroz JA. Advances in chromatographic supports for pharmaceutical-grade plasmid DNA purification. *J. Sep. Sci.* 35(22), 3046–3058 (2012).